US009164895B2

a2z United States Patent (10) Patent No.: US 9,164,895 B2
Chiang et al. 45) Date of Patent: *Oct. 20, 2015
(54) VIRTUALIZATION OF SOLID STATE DRIVE (58) Field of Classification Search
AND MASS STORAGE DRIVE DEVICES CPC ... GO6F 3/0664; GOGF 3/0665; GO6F 3/0685;
WITH HOT AND COLD APPLICATION GOGF 12/109; GOG6F 3/0613; GOGF 3/0631
MONITORING USPC o 711/203, 5, 6, 103, 105, 202
. . See application file for complete search history.
(71) Applicant: Marvell World Trade Ltd., St. Michael
(BB) (56) References Cited
(72) Inventors: Hsing-Yi Chiang, Taipei (TW); Xinhai U.S. PATENT DOCUMENTS
Kang, Milpitas, CA (US); Qun Zhao, 6016530 A 12000 Auclair ef al
,016, uclair et al.
Pleasanton, CA (US) 8,190,815 B2 52012 Kakihara et al.
(73) Assignee: Marvell World Trade Ltd., St. Michael (Continued)
(BB)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 EP 0564699 10/1993
U.S.C. 154(b) by 0 days. EP 1710674 10/2006
This patent is subject to a terminal dis- (Continued)
claimer. OTHER PUBLICATIONS
(21) Appl. No.: 14/314,446 Coenen, Jean-Pierre, Authorized Officer, European Patent Office,
o ’ PCT International Application No. PCT/US10/057495, in Interna-
iled: tional Search Report, mailed Feb. 11, 2011, 11 pages.
(22) Filed: Jun. 25,2014 P! pag
(Continued)
(65) Prior Publication Data
US 2014/0310449 A1 Oct. 16, 2014 Primary Examiner — Hong Kim
Related U.S. Application Data (57 ABSTRACT
(63) Continuation of application No. 12/950,733, filed on Systems and techniques relating to storage technologies
Nov. 19. 2010. now Pat. No. 8.769.241 e include, according to an aspect, a data processing apparatus
T ’ oo including;: a processor; a controller coupled with the proces-
(60) Provisional application No. 61/266,924, filed on Dec. sor; a solid state drive coupled with the controller; and a mass
4,2009. storage drive coupled with the controller; wherein at least a
portion of the solid state drive and the mass storage drive are
(51) Int.CL virtualized as a single physical storage drive; wherein mul-
GOOF 12/00 (2006.01) tiple applications stored in the virtualized single physical
GOGF 12/02 (2006.01) storage drive are configured to run on the processor; wherein
ontinue one or more applications 1n a hot application group are store
(Continued) pplications ina hot application group d
(52) US.Cl in the solid state drive, and one or more applications in a cold
CPC ' GOGF 12/0246 (2013.01); GOGF 3/0604 application group are stored in the mass storage drive; and

(2013.01); GOGF 3/068 (2013.01); GOG6F
3/0611 (2013.01); GOGF 3/0664 (2013.01);
GOGF 12/109 (2013.01); GOGF 2212/7201
(2013.01)

wherein each of the multiple applications is actively moni-
tored and placed in either the hot application group or the cold
application group.

14 Claims, 11 Drawing Sheets

600
| OS File System Driver P_

!

605
| OS Storage Stack Driver(s) P_

610
| OS Disk Class Driver |j

l

Disk Filter Driver

615

620 630

Storage Controller Driver

Bridge Driver
Flash Controller Driver
SSD (e.g. Flash)

625

US 9,164,895 B2

Page 2
(51) Int. CI. 2011/0258379 Al* 10/2011 Hayashicccccoernene 711/114
GO6F 3/06 (2006.01)
GO6F 12/10 (2006.01) FOREIGN PATENT DOCUMENTS
: EP 1873624 1/2008
(56) References Cited P 0797659 A 111997
Jp 10063551 A 3/1998
U.S. PATENT DOCUMENTS e 2008139447 112008
8,769,241 B2* 7/2014 Chiangetal. 711/203 wo 2009102425 §/2009
2005/0235076 Al 10/2005 Winarski et al.
2007/0271413 Al* 11/2007 Fujibayashi et al. 711/112 OTHER PUBLICATIONS
2009/0030868 Al* 1/2009 Radhakrishnan et al. 707/1
2009/0049234 Al 2/2009 Oh et al. Jo et al., “SSD-HDD-Hybrid Virtual Disk in Consolidated Environ-
2009/0144483 Al* 6/2009 Sakuraietal. ... 711/100 ments,” Aug. 25, 2009, Euro-Par 2009, Parallel Processing Work-
2009/0287878 AL* 11/2009 Yamamoto et al T3 oo 10 pages
2010/0037041 Al* 2/2010 Joshietal.ccocevvnnnne. 713/2 L ' . .
2010/0262752 Al 10/2010 Davis et al. Notice of Reasons for Rejection, Japanese Application No. 2012-
2010/0281230 Al 11/2010 Rabii et al. 542078, dated Sep. 2, 2014, 4 pages.
2011/0035548 Al* 2/2011 Kimmeletal. 711/114 . .
2011/0179235 Al* 7/2011 Leeetal. ...cccoovrvvrnnnn... 711/154 * cited by examiner

US 9,164,895 B2

Sheet 1 of 11

Oct. 20, 2015

U.S. Patent

aAuQ %sIg

QMNW\

ass

0zr W
00T Lqﬂ

MNNIAA

MNN\AA

\ T+

L ‘Bi4

oAl [BNUIA

<« JO

ssalppy |eo1boT

QNN\A&

US 9,164,895 B2

Sheet 2 of 11

Oct. 20, 2015

U.S. Patent

QNNH

adH

Z b1y

ass

18[j0u0)

.ﬂNNIﬂ

orzS

10SS820.1d

s0zS

US 9,164,895 B2

Sheet 3 of 11

Oct. 20, 2015

U.S. Patent

adH

ass

Z 9oelaU| Aows|\
szeS steS

L 80epaY| 108S8201d
0zeS orsS

US 9,164,895 B2

Sheet 4 of 11

Oct. 20, 2015

U.S. Patent

p "Bl

18[j0u0)

0zvS

18[j0u0)

orrS

10SS820.1d

sovS

US 9,164,895 B2

Sheet 5 of 11

Oct. 20, 2015

U.S. Patent

G b1y

szs S
ShS _ %S
uoiiued puooss | uomued1sil{ le——» 18]j041U0D
ass | ass
oss S :
0zsS orsS

WolSAS 1SOH

.«.Qm.lﬁ

US 9,164,895 B2

Sheet 6 of 11

Oct. 20, 2015

U.S. Patent

9 614

.Q%H

(use|4 "6'8) ass

A

y

or9 H

JoAlI J9|j0nu0) yse|q

h

y

aaH

[0 _5z9

QM.QH

JaAlIq abpug

A

y

A

JaALIq J9|01u0) dbelo)s

[0z9

J9AL(J9}14 HSId

A

A

y

JaAuQ sSe[D ¥%sIg SO

A

y

(s)}1eAuQ yoeys abelo)s SO
5095

A

y

Jaaug welsAs 9)14 SO

U.S. Patent Oct. 20, 2015 Sheet 7 of 11 US 9,164,895 B2

j705
Operate drives including a SSD and a HDD

A 4

Virtualize the SSD and the HDD to be a)—710
single logical drive with a logical address
space of 0 to L

A 4

Determine, based on a file to be written to | §7720
the logical drive, a target logical address that
corresponds to one of the SSD and the HDD

A 4

Write the file to the logical drive at the J—730
target logical address to effect storage on
one of the SSD and the HDD

Fig. 7

U.S. Patent Oct. 20, 2015 Sheet 8 of 11 US 9,164,895 B2

Virtualize two or more physicals drives to be)—805
a single logical drive with a logical address
space of O to L

A 4

Map logical block addresses of a first)—810

address range from 0 to K to a first physical
drive

Y

Map logical block addresses of a)—815

second address range from K+1to L to a
second physical drive

Y

Select, based on a characteristic of a file

to be written to the logical drive, a)—gz 4

target logical address that corresponds to
one of the physical drives

Y

Cause a controller to select, based on the)—825

target logical address, one of the physical
drives

A 4

Cause the controller to write the file to the | § 53¢
selected physical drive

Fig. 8

U.S. Patent Oct. 20, 2015 Sheet 9 of 11 US 9,164,895 B2

Monitor usage information of files on a)—905
logical drive that is associated with a SSD
and a HDD

A 4

Select a file based on usage information to j910
transfer from the HDD to the SSD

A 4

Select a target logical address that j915
corresponds to the SSD

A 4

Move, based on the selected target logical 920
address, the file from the HDD to the SSD to j
decrease a read access latency of the file

Fig. 9

U.S. Patent Oct. 20, 2015

Sheet 10 of 11

US 9,164,895 B2

Monitor usage information of files on a
logical drive that is associated with a SSD
and a HDD

A

y

Select a file based on usage information to
transfer from the SSD to HDD

A

y

Select a target logical address that
corresponds to the HDD

A

y

increase available

Move, based on the selected target logical
address, the file from the SSD to the HDD to

space on the SSD

jl 025

Fig. 10

U.S. Patent Oct. 20, 2015 Sheet 11 of 11 US 9,164,895 B2

Identify a type of the file to be written to a)—1110
logical drive associated with a SSD and a
HDD

A 4

Select, based on a type of a file to be written)_1115

to the logical drive, a target logical address

that corresponds to one of the SSD and the
HDD

Y

Write the file to the logical drive at the target)—1120

logical address to effect storage on one of
the SSD and the HDD

Fig. 11

US 9,164,895 B2

1
VIRTUALIZATION OF SOLID STATE DRIVE
AND MASS STORAGE DRIVE DEVICES
WITH HOT AND COLD APPLICATION
MONITORING

CROSS REFERENCE TO RELATED
APPLICATION

This disclosure is a continuation application of (and claims
the benefit of priority to) U.S. application Ser. No. 12/950,
733, filed Nov. 19, 2010 and entitled “VIRTUALIZATION
OF STORAGE DEVICES,” now U.S. Pat. No. 8,769,241,
which claims the benefit of the priority of U.S. Provisional
Application Ser. No. 61/266,924, filed on Dec. 4, 2009 and
entitled “Hyper SSD,” which is incorporated herein by refer-
ence in its entirety.

BACKGROUND

This disclosure relates to storage technologies.

Data processing systems such as computer systems can use
one or more storage devices to store and retrieve information.
Various examples of storage devices include solid state drives
(SSDs), tape drives, and disk drives such as hard disk drives
(HDDs) and optical drives. A SSD can include non-volatile
memory such as flash memory. A storage device can store
files such as operating system files and application files. A
SSD may provide lower latency than a HDD, whereas a HDD
may provide a greater storage capacity than a SSD.

SUMMARY

The present disclosure includes systems and techniques
related to storage technologies including, among other things,
virtual drives.

According to an aspect of the described systems and tech-
niques, a method for use with storage technologies includes
operating drives including a solid state drive (SSD) and a disk
drive, where the SSD and the disk drive are virtualized as a
single logical drive having a logical address space, where the
logical drive maps logical block addresses to the SSD and to
the disk drive. The technique includes determining, based on
a file to be written to the logical drive, a target logical address
that corresponds to one of the SSD and the disk drive, and
writing the file to the logical drive at the target logical address
to effect storage on one of the SSD and the disk drive. In some
implementations, operating drives includes operating a SSD
and a mass storage device such as a tape drive. In some
implementations, operating drives includes operating a first
drive that is faster than a second drive, where the first drive has
a smaller capacity than the second drive. Determining a target
logical address can include using a characteristic of a file to
select a target logical address. Determining the target logical
address can include selecting one of the first address range
and the second address range.

According to another aspect of the described systems and
techniques, a method for use with storage technologies
includes operating drives including a SSD and a disk drive,
virtualizing the SSD and the disk drive to be a single logical
drive with a logical address space, where the logical drive
maps logical block addresses to the SSD and to the disk drive,
selecting, based on a characteristic of a file to be written to the
logical drive, a target logical address that corresponds to one
of'the SSD and the disk drive, and writing the file to the logical
drive at the target logical address to effect storage on one of
the SSD and the disk drive. The method can virtualize the
SSD and the disk drive to be a single logical drive with a

20

30

35

40

45

55

2

logical address space of O to L, where L is greater than 0.
Virtualizing can include mapping logical block addresses of a
first address range of the logical address space to the SSD and
logical block addresses of a second, different address range of
the logical address space to the disk drive.

Implementations can include monitoring usage informa-
tion of files associated with the logical drive. In some imple-
mentations, the characteristic of the file is based on the usage
information such as a relative usage frequency. Selecting the
target logical address can include using the usage information
to select one of the SSD and the disk drive. In some cases, the
file was previously stored on the disk drive. Selecting the
target logical address can include selecting a target logical
address that corresponds to the SSD. Writing the file to the
logical drive can include moving the file from the disk drive to
the SSD to decrease a read access latency of the file. In some
cases, the file is already stored on the SSD. Writing the file to
the logical drive can include moving, based on respective
usage information, the file stored on the SSD to the disk drive
to increase available space on the SSD. Implementations can
include monitoring usage information of files associated with
the logical drive. Determining the target logical address can
include using the usage information to select one of the SSD
and the disk drive.

Implementations can include identifying a type of the file
associated with the logical drive. The characteristic of the file
can include the type. Selecting the target logical address can
include selecting a target logical address that corresponds to
the SSD based on a latency requirement of the type of file.
Writing the file to the logical drive can include writing the file
to the SSD.

Virtualizing the SSD and the disk drive can include map-
ping logical block addresses of a first address range from 0 to
K to the SSD and logical block addresses of a second address
range from K+1 to L to the disk drive, where L is greater than
K, and K is greater than 0. Writing the file to the logical drive
can include causing a controller to select, based on the target
logical address, one of the SSD and the disk drive, and write
the file to the selected drive.

The described systems and techniques can be implemented
in electronic circuitry, computer hardware, firmware, soft-
ware, or in combinations of them, such as the structural means
disclosed in this specification and structural equivalents
thereof. This can include at least one computer-readable
medium embodying a program operable to cause one or more
data processing apparatus (e.g., a signal processing device
including a programmable processor) to perform operations
described. Thus, program implementations can be realized
from a disclosed method, system, or apparatus, and apparatus
implementations can be realized from a disclosed system,
computer-readable medium, or method. Similarly, method
implementations can be realized from a disclosed system,
computer-readable medium, or apparatus, and system imple-
mentations can be realized from a disclosed method, com-
puter-readable medium, or apparatus.

For example, one or more disclosed embodiments can be
implemented in various systems and apparatus, including, but
not limited to, a special purpose data processing apparatus
(e.g., a wireless communication device such as a wireless
access point, a remote environment monitor, a router, a
switch, a computer system component, a medium access
unit), a mobile data processing apparatus (e.g., a wireless
client, a cellular telephone, a smart phone, a personal digital
assistant (PDA), a mobile computer, a digital camera), a gen-
eral purpose data processing apparatus such as a computer, or
combinations of these.

US 9,164,895 B2

3

Systems and apparatuses can include a first interface to
communicate with a SDD, a second interface to communicate
with a disk drive, and processor electronics to communicate
with the drives and map logical block addresses in a logical
address space of 0 to L, where L is greater than 0. The SSD
and the disk drive can be virtualized as a single logical drive.
In some implementations, the processor electronics map logi-
cal block addresses of a first address range of the logical
address space to the SSD and logical block addresses of a
second, different address range of the logical address space to
the disk drive. In some implementations, the processor elec-
tronics are configured to perform operations that include
determining, based on a file to be written to the logical drive,
atarget logical address that corresponds to one of the SSD and
the disk drive, and writing the file to the logical drive at the
target logical address to effect storage on one of the SSD and
the disk drive.

These and other implementations can include one or more
of the following features. Determining a target logical
address can include using a characteristic of a file to select a
target logical address. The operations can include monitoring
usage information of files associated with the logical drive. In
some implementations, the characteristic of the file is based
on the usage information. Selecting the target logical address
can include using the usage information to select one of the
SSD and the disk drive. In some cases, the file is already
stored on the disk drive. Selecting the target logical address
can include selecting a target logical address that corresponds
to the SSD. Writing the file to the logical drive can include
moving the file from the disk drive to the SSD to decrease a
read access latency ofthe file. In some cases, the file is already
stored on the SSD. Writing the file to the logical drive can
include moving, based on respective usage information, the
file stored on the SSD to the disk drive to increase available
space on the SSD.

Implementations can include the action of identifying a
type of the file associated with the logical drive. The charac-
teristic of the file can include the type. Selecting the target
logical address can include selecting a target logical address
that corresponds to the SSD based on a latency requirement of
the type of file. Writing the file to the logical drive can include
writing the file to the SSD.

In some implementations, the SSD is partitioned into
extents, wherein the virtualizing can include virtualizing an
extent of the extents and the disk drive to be the single logical
drive. In some implementations, the first address range
includes addresses from 0 to K, and the second address range
includes addresses from K+1 to L, where L. is greater than K,
and K is greater than 0.

In another aspect, systems and apparatuses can include a
SSD, a disk drive, and processor electronics to communicate
with the drives and map logical block addresses in a logical
address space of 0 to L. In some implementations, the pro-
cessor electronics map logical block addresses of a first
address range to the SSD and logical block addresses of a
second, different address range to the disk drive. In some
implementations, the first address range includes addresses
from 0 to K and the second address range includes addresses
from K+1to L, where L is greater than K, and K is greater than
0. Determining a target logical address can include selecting
one of the first address range and the second address range.

Details of one or more implementations are set forth in the
accompanying drawings and the description below. Other
features and advantages may be apparent from the description
and drawings, and from the claims.

DRAWING DESCRIPTIONS

FIG. 1 shows an example of a mapping technique for a
virtual drive associated with two physical drives.

40

45

65

4

FIG. 2 shows an example of a system architecture that
includes a SSD and a HDD.

FIG. 3 shows another example of a system architecture that
includes a SSD and a HDD.

FIG. 4 shows an example of a system architecture that
includes dual controllers, a SSD, and a HDD.

FIG. 5 shows an example of a system architecture that
includes two HDDs and a multi-partitioned SDD.

FIG. 6 shows an example of an operating system storage
stack architecture.

FIG. 7 shows an example of a virtual drive storage process.

FIG. 8 shows another example of a virtual drive storage
process.

FIG. 9 shows an example of a virtual drive storage process
that includes monitoring file usage information.

FIG. 10 shows another example of a virtual drive storage
process that includes monitoring file usage information.

FIG. 11 shows another example of a virtual drive storage
process that includes file type identification.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

This disclosure provides details and examples of virtual
drive storage technologies. Described systems and tech-
niques include mechanisms for virtualizing physical storage
devices, such as a disk drive and a SSD into a virtual drive.
Described systems and techniques include mechanisms for
moving files between physical drives of a virtual drive to
optimize performance of the virtual drive. Using different
types of physical drives can provide advantages such as
increased access performance and increased storage.

FIG. 1 shows an example of a mapping technique for a
virtual drive associated with two physical drives. A logical
drive can be associated with two or more physical drives such
as a SSD 120 and a disk drive 130. A mapping technique 100
maps a logical address 110 such as a logical block address
(LBA) of a virtual drive to a logical address suitable for input
to one of the physical drives 120, 130 of the virtual drive. In
this example, a LBA space 105 is partitioned into first and
second address ranges 115, 125. The first range 115 includes
addresses from O to K. The second range 125 includes
addresses from K+1 to L. Here, L is greater than K, and K is
greater than 0. A first mapping translates, ifrequired, LBAs in
the first range 115 to LBAs suitable for the SSD 120. A second
mapping translates L.BAs in the second range 125 to LBAs
suitable for the disk drive 130. Here, LBAs from K+1 to L are
mapped to addresses 0 to L-K, respectively, where address
L-K is the maximum logical address value of the disk drive
130.

Based on the mappings, the mapping technique 100 maps
a logical block address 110 onto one of multiple address
ranges. The address ranges are respectively associated with
physical drives 120, 130. The mapping technique 100 is not
limited to two physical drives, but can be applied to three or
more physical drives, or partitions thereof, that are associated
with a virtual drive. Various potential advantages of a virtual
drive including a SSD and a disk drive, as described, can
include faster boot-up time, faster read and write perfor-
mance, and increased storage capacity.

FIG. 2 shows an example of a system architecture that
includes a SSD and a HDD. A processor 205 uses a controller
210 to communicate with two physical drives 215, 220 that
are virtualized into a single logical drive. Various examples of
physical drives 215, 220 include SSD 215 and HDD 220. In
some implementations, the SSD 215 includes NAND flash

US 9,164,895 B2

5

memory. In some implementations, the SSD 215 includes
NOR flash memory. In some implementations, the SSD 120
includes Double Data Rate (DDR) memory with a battery
backup.

Various examples of physical interfaces between the pro-
cessor 205 and the controller 210 include Peripheral Compo-
nent Interconnect (PCI), PCI Express (PCle), Serial
Advanced Technology Attachment (SATA), Small Computer
System Interface (SCSI), Serial Attached SCSI (SAS), Uni-
versal Serial Bus (USB), and interfaces for memory cards
such as MultiMediaCards (MMCs). Various examples of host
software communication protocols include Advanced Host
Controller Interface (AHCI), Non-Volatile Memory Host
Controller Interface (NVMHCI), Integrated Drive Electron-
ics (IDE), and Intelligent Input/Output (120).

In some implementations, a processor 205 uses a mapping
technique 100 to control selection of a physical drive 215,220
to store data to a logical drive. For example, a virtualization
process running on a processor 205 can maintain the virtual-
ization of the physical drives 215, 220. An application run-
ning on the processor 205 can write to a specific LBA. The
virtualization process can transform the LBA into a trans-
formed logical address. The virtualization process can issue a
write command to the controller 210 with the transformed
logical address and an identification of the target physical
drive 215,220. The processor 205 can write files to the logical
drive. In some cases, writing a file to a logical drive includes
rewriting the file to the logical drive at a different logical
address via a move operation. In some implementations, a
processor 205 performs a move operation that includes read-
ing a file from one of the physical drives 215, 220 and writing
the file to the other drive. In some implementations, a move
operation includes operating a controller 210 to transfer one
or more files between physical drives 215, 220.

In some implementations, the controller 210 uses a map-
ping technique 100 to control selection of a physical drive
215, 220 when processing a write command from a processor
205. For example, a controller 210 can maintain the virtual-
ization of the physical drives 215, 220. The controller 210 can
receive a write command produced by an application running
on the processor 205. The write command can include a LBA
and write data. The controller 210 selects a physical drive
215, 220 based on the LBA included in the write command.

FIG. 3 shows another example of a system architecture that
includes a SSD and a HDD. A data processing system can
include processor electronics such as a controller 305. A
controller 305 includes one or more processors 310, memory
315, and interfaces 320, 325 for communicating with respec-
tive physical drives such as a SSD 330 and a HDD 335.
Interfaces 320, 325 for communicating with physical drives
can include circuitry to generate address signals, data signals,
or both. In some implementations, the controller 305 includes
integrated circuitry effecting the processor 310, memory 315,
and interfaces 320, 325.

FIG. 4 shows an example of a system architecture that
includes dual controllers, a SSD, and a HDD. A data process-
ing system can include processor electronics such one or
more processors 405 and one or more controllers 410, 420.
The processor 405 can communicate with two or more con-
trollers 410, 420 that respectively control two or more physi-
cal drives such as a SSD 430 and a HDD 440. The processor
405 can perform a virtualization process to create a virtual
drive out of the SSD 430 and the HDD 440.

FIG. 5 shows an example of a system architecture that
includes two HDDs and a multi-partitioned SDD. A control-
ler 510 can partition a SSD 530 into two or more partitions
540, 545. A partition can be referred to as an extent. The

10

15

20

25

30

35

40

45

50

55

60

65

6

controller 510 can group a first partition 540 of the SSD 530
and a first HDD 520 to create form a first virtual drive. The
controller 510 can group a second partition 545 of the SSD
530 and a second HDD 525 to form a second virtual drive. A
host system 505 can communicate with either the first or
second virtual drive via the controller 510. A host system 505
can include one or more processors. In some implementa-
tions, the host system 505 includes the controller 510. A host
system 505 can run an operating system (OS) that provides
access to a file system stored on a drive, such as a virtual drive
or a physical drive. The OS can load a driver that virtualizes
physical drives. In some implementations, the OS loads a
driver that can communicate with physical drives configured
as a virtual drive.

FIG. 6 shows an example of an operating system storage
stack architecture. An operating system storage stack archi-
tecture can include an OS file system driver 600, one or more
OS storage stack drivers 605, OS disk class driver 610, and
disk filter driver 615. The OS file system driver 600 can
provide a file system functionality to the operating system and
various applications.

The disk filter driver 615 can communicate with multiple
drivers associated with different physical drives. The disk
filter driver 615 can communicate with a storage controller
driver 620 associated with a physical drive such as a HDD
625. The disk filter driver 615 can communicate with another
controller driver 640 associated with a physical drive such as
a SSD 645. For example, the disk filter driver 615 can com-
municate with a flash controller driver 640 that is operable to
interact with flash memory in a SSD 645.

In some implementations, a bridge driver 630 is commu-
nicatively coupled with the disk filter driver 615 and the flash
controller driver 640. In some implementations, the bridge
driver 630 is operable to translate commands between the
disk filter driver 615 and the flash controller driver 640.

In some implementations, the disk filter driver 615
includes functionality to create a virtual drive. In some imple-
mentations, the disk filter driver 615 is aware of a controller
that combines two or more drives into a virtual drive. In some
implementations, one or more drivers such as the OS file
system driver 600 are not aware of drives that are virtual and
treat such drives as physical drives.

FIG. 7 shows an example of a virtual drive storage process.
A controller, host system, or combination thereof can run a
virtual drive storage process. At 705, the process operates
drives including a SSD and a HDD. In some implementations,
operating drives includes communicating with a controller
that is in communication with the SSD and the HDD. In some
implementations, operating drives includes communicating
with two or more controllers that are in communication with
the SSD and the HDD, respectively. In some implementa-
tions, operating drives includes communicating with the SSD
and the HDD by a controller, or alternatively without requir-
ing a controller.

At 710, the process virtualizes the SSD and the HDD to be
a single logical drive with a logical address space of Oto L. In
some implementations, the process can make the SSD and the
HDD appear as a single drive to an operating system. In some
implementations, a controller can virtualize physical drives.
Virtualization can happen each time a controller and a host
system are powered up. In some implementations, virtualiza-
tion includes accessing a configuration file that specifies
physical drive mappings for a virtual drive during an initial-
ization process after power is turned on.

At 720, the process determines, based on a file to be written
to the logical drive, a target logical address that corresponds
to one of the SSD and the HDD. Determining a target logical

US 9,164,895 B2

7

address can include selecting a target logical address logical
within the logical address space of the logical drive based on
a characteristic of the file. For example, an operating system
can write a file to a logical drive. The process can identify a
characteristic of a file such as a file type or file usage. The
process can select a target logical address based on the type
such that the file will be written to the SSD. Alternatively, the
process selects a different target logical address such that the
file will be written to the HDD. In some implementations, a
target logical address includes a logical block address. In
some implementations, determining a target logical address
can include translating a logical address within the logical
address space of the logical drive to a logical address within
the logical address space of one of the SSD and HDD.

At 730, the process writes the file to the logical drive at the
target logical address to effect storage on one of the SSD and
the HDD. In some cases, writing the file, at 730, can include
moving the file from the SSD to the HDD, or vice versa. In
some implementations, the target logical address is based on
the logical address space of one ofthe SSD and HDD. Insome
implementations, the target logical address is based on the
logical address space of the virtual drive.

In some implementations, an operating system’s file sys-
tem driver does not permit external selection of a target logi-
cal address. In such implementations, the process can allow
the operating system to write to a target logical address that
the operating system selects. After an initial write by the
operating system, the process, at 720, can select a different
target logical address based on a characteristic of a file. For
example, if the initial target logical address corresponds to the
HDD, then the process can select a target logical address that
corresponds to the SSD. The process, at 730, writes the file to
the logical drive to move the file to the new target logical
address. An operating system may assign logical addresses,
e.g., logical block addresses, from lower address values to
higher address values. Therefore, it may be advantageous to
map a SSD, of a virtual drive, to be at a lower address range
than a HDD of the virtual drive such that the initial location of
files will be on the SSD as space permits. To manage space on
the SSD, a process can move less frequently used files from
the SSD to the HDD.

In some implementations, an operating system provides an
application programming interface (API) to move files that
have been already written to a drive. For example, a storage
process can use such an API to move files after an initial write
to a drive. In some implementations, an operation system can
provide an APIto control selection of target logical addresses
for an initial write of a file to a drive.

FIG. 8 shows another example of a virtual drive storage
process. A virtual drive storage process, at 805, virtualizes
two or more physicals drives to be a single logical drive with
a logical address space of 0 to L. The process, at 810, maps
logical block addresses of a first address range from 0 to K to
a first physical drive. At 815, the process maps logical block
addresses of a second address range from K+1 to L to a
second physical drive. Here, L is greater than K, and K is
greater than 0.

At 820, the process selects a target logical address that
corresponds to one of the physical drives. The process selects
atarget logical address based on a characteristic of a file to be
written to the logical drive. In some implementations, select-
ing a target logical address includes selecting a target logical
address to move a file from one of the physical drives to the
other.

At 825, the process causes a controller to select, based on
the target logical address, one of the physical drives. Causing
a controller to select can include sending a write command to

25

40

45

55

8

a controller, where the write command includes the target
logical address. In some implementations, the process
includes a driver identifier in the write command. For
example, the controller can select a drive based on a drive
identifier in a write command. In some implementations, a
portion of the target logical address, e.g., the most significant
bit of the target logical address, acts as a drive identifier. In
some implementations, the process converts the target logical
address into an address that is compatible with an address
range associated with the drive. At 830, the process causes the
controller to write the file to the selected physical drive. In
some implementations, sending a write command to a con-
troller can cause the controller to select one of the physical
drives and to write a file to the selected physical drive.

FIG. 9 shows an example of a virtual drive storage process
that includes monitoring file usage information. A virtual
drive storage process, at 905, monitors usage information of
files on a logical drive that is associated with a SSD and a
HDD. At 910, the process selects a file based on usage infor-
mation such as a usage frequency to move from the HDD to
the SSD. Selecting a file based on usage information can
including using a relative usage frequency of a file. The pro-
cess can determine relative usage frequencies of files stored
on the logical drive based on a data structure such as a file
usage log or table. For example, the process can select one or
more files that are used more than other files to move to the
SSD. At 915, the process selects a target logical address that
corresponds to the SSD. At 920, the process moves, based on
the selected target logical address, the file from the HDD to
the SSD to decrease a read access latency of the file.

FIG. 10 shows another example of a virtual drive storage
process that includes monitoring file usage information. A
storage process, at 1010, monitors usage information of files
on a logical drive that is associated with a SSD and a HDD.
Monitoring usage information can include accessing an
operation system file that tracks file access information such
as a last access time or an access count. At 1015, the process
selects a file based on usage information to transfer from the
SSD to HDD. Selecting a file can include determining a
relative usage frequency based on the usage information of
two or more files. In some implementations, the process uses
a last access time and a date threshold to search for infre-
quently used files. In this example, a search can be limited to
addresses within the address range corresponding to the SSD.

At 1020, the process selects a target logical address that
corresponds to the HDD. Selecting such a target logical
address can include using a mapping table that identifies one
or more address ranges and one or more physical drives,
respectively. At 1025, the process moves, based on the
selected target logical address, the file from the SSD to the
HDD to increase available space on the SSD. Moving a file
can include reading the file from the SSD, writing the file to
the HDD, and deleting the file from the SSD. Deleting a file
can include marking the file as deleted without requiring an
erasure of the file.

FIG. 11 shows another example of a virtual drive storage
process that includes file type identification. A storage pro-
cess, at 1110, identifies a type of the file to be written to a
logical drive associated with a SSD and a HDD. Identifying a
type of the file can include identifying a file to be rewritten to
the logical drive viaa move. Identifying a file type can include
accessing a portion of a file name such as a file extension
string. In some implementations, identifying a file type can
include accessing a portion of a file to determine a file type. In
some implementations, identifying a file type can include
determining the source of the file, e.g., the owner of the
process responsible for sourcing the file to be written. Insome

US 9,164,895 B2

9

implementations, files associated with owners such as
“administrator” or “root” can be assigned to the SSD.

At 1115, the process selects, based on a type of a file to be
written to the logical drive, a target logical address that cor-
responds to one of the SSD and the HDD. At 1120, the process
writes the file to the logical drive at the target logical address
to effect storage on one of the SSD and the HDD. In some
implementations, the process includes moving the file from
the SSD to the HDD or from the HDD to the SSD. Moving the
file can include the selecting, at 1115, and the writing, at
1120.

A host system can run a hyper-drive utility to interact with
one or more virtual drives, e.g., hyper-drives. In some imple-
mentations, a hyper-drive utility can partition a non-volatile
memory into one or more extents. A hyper-drive utility can
virtualize a non-volatile memory extent and a HDD as a
single disk. A hyper-drive utility can run as a background
process. In some implementations, such a utility is included
as part of a file system driver.

A hyper-drive utility can optimize the storage of files on a
hyper-drive. The hyper-drive utility can place hot (e.g., fre-
quently used) applications into a hyper extent, which resides
in a SSD that includes non-volatile memory. For example, the
utility can move an executable application file to a hyper
extent. The utility can move cold (e.g., rarely used) applica-
tions from the hyper extent to a HDD extent. For example, if
an application is not used for a period of time, the utility can
move files associated with the application from the hyper
extent to the HDD extent.

In some implementations, a hyper-drive utility can identify
files to assign to the hyper extent based on one or more
characteristics such as file type, file usage, or both. The utility
can cause storage on the hyper extent of operating system files
such as a page file or a swap file. The utility can cause storage
on the hyper extent of startup application files. The utility can
cause the storage of files associated with frequently used
applications on the hyper extent. If there is an update of a hot
application, the utility can move the update to the hyper
extent. In some implementations, the utility accesses a list of
pre-defined file types to determine whether to store a file on
the hyper extent.

A virtual drive address space, such as a hyper-drive address
space, can include the range [LBA 0, LBA N] being assigned
to a SSD and the range [LBA N+1, MAX_L.BA] being
assigned to a HDD. MAX_L.BA represents the maximum
LBA value associated with the hyper-drive address space. In
some implementations, an operating system is operable to
write files starting at the beginning of an address space. If the
operating system is agnostic to the physical drive layout of a
hyper-drive, then a hyper-drive utility can move files between
the physical drives to optimize performance of the hyper-
drive. Moving files between drives can include reading data of
the file, using a new LBA to be associated with the file, and
writing file data to the new LBA. In some implementations,
the utility can cause the operating system to have pre-defined
LBA ranges for one or more types of files. Such pre-defined
ranges can correspond to a SSD of a hyper-drive. In some
implementations, hyper-drive address space can include the
range [LBA 0, LBA N] being assigned to a HDD and the
range [LBA N+1, MAX_L.BA] being assigned to a SSD.

A few embodiments have been described in detail above,
and various modifications are possible. The disclosed subject
matter, including the functional operations described in this
specification, can be implemented in electronic circuitry,
computer hardware, firmware, software, or in combinations
of them, such as the structural means disclosed in this speci-
fication and structural equivalents thereof, including poten-

35

40

45

60

10

tially a program operable to cause one or more data process-
ing apparatus to perform the operations described (such as a
program encoded in a computer-readable medium, which can
be a memory device, a storage device, a machine-readable
storage substrate, or other physical, machine-readable
medium, or a combination of one or more of them).

The term “data processing apparatus” encompasses all
apparatus, devices, and machines for processing data, includ-
ing by way of example a programmable processor, a com-
puter, or multiple processors or computers. The apparatus can
include, in addition to hardware, code that creates an execu-
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a com-
bination of one or more of them.

A program (also known as a computer program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, or declarative or procedural languages, and
it can be deployed in any form, including as a stand alone
program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A program does
not necessarily correspond to a file in afile system. A program
can be stored in a portion of a file that holds other programs or
data (e.g., one or more scripts stored in a markup language
document), in a single file dedicated to the program in ques-
tion, or in multiple coordinated files (e.g., files that store one
or more modules, sub programs, or portions of code). A
program can be deployed to be executed on one computer or
on multiple computers that are located at one site or distrib-
uted across multiple sites and interconnected by a communi-
cation network.

While this specification contains many specifics, these
should not be construed as limitations on the scope of what
may be claimed, but rather as descriptions of features that
may be specific to particular embodiments. Certain features
that are described in this specification in the context of sepa-
rate embodiments can also be implemented in combination in
a single embodiment. Conversely, various features that are
described in the context of a single embodiment can also be
implemented in multiple embodiments separately or in any
suitable subcombination. Moreover, although features may
bedescribed above as acting in certain combinations and even
initially claimed as such, one or more features from a claimed
combination can in some cases be excised from the combi-
nation, and the claimed combination may be directed to a
subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the embodiments described above should not be
understood as requiring such separation in all embodiments.

Other embodiments fall within the scope of the following
claims.

What is claimed is:

1. A data processing apparatus comprising:

a processor;

a controller coupled with the processor;

a solid state drive coupled with the controller;

a mass storage drive coupled with the controller; and

a disk filter driver programmed to virtualize at least a

portion of the solid state drive and the mass storage drive
as a single physical storage drive;

US 9,164,895 B2

11

wherein multiple applications stored in the virtualized
single physical storage drive are configured to run on the
processor;

wherein one or more applications in a hot application

group are stored in the solid state drive, and one or more
applications in a cold application group are stored in the
mass storage drive;

wherein each of the multiple applications is actively moni-

tored and placed in either the hot application group or the
cold application group; and

wherein the data processing apparatus comprises

an operating system file system driver that is not aware that

the single physical storage drive is virtualized from the
at least a portion of the solid state drive and the mass
storage drive; and

a bridge driver programmed to translate commands from

the disk filter driver for the solid state drive.

2. The data processing apparatus of claim 1,

wherein the mass storage drive is a first mass storage drive,

the atleast a portion of the solid state drive is a first extent
in the solid state drive, the apparatus comprises a second
mass storage drive, and a second extent in the solid state
drive and the second mass storage drive are virtualized
as another single physical storage drive.

3. The data processing apparatus of claim 1, wherein the
controller comprises dual controllers, a first of the dual con-
trollers being for the solid state drive, and a second of the dual
controllers being for the mass storage drive.

4. The data processing apparatus of claim 1, wherein the
virtualized single physical storage drive is a hyper solid state
drive.

5. The data processing apparatus of claim 1, wherein the
solid state drive comprises NAND Flash memory.

6. The data processing apparatus of claim 1, wherein the
mass storage drive comprises a disk drive.

7. The data processing apparatus of claim 6, wherein the
disk drive comprises an optical drive.

10

15

20

25

30

35

12

8. A method comprising:

running multiple applications on a processor, which is
coupled with a controller, which is coupled with a solid
state drive and a mass storage drive;

virtualizing at least a portion of the solid state drive and the

mass storage drive as a single physical storage drive;
storing the multiple applications in the virtualized single
physical storage drive, including storing one or more hot
applications in the solid state drive and one or more cold
applications in the mass storage drive; and
actively monitoring each of the multiple applications to
identify it as either a hot application or a cold applica-
tion;

wherein the virtualizing is performed by a disk filter driver,

and the method comprises using a bridge driver to trans-
late commands from the disk filter driver for the solid
state drive.

9. The method of claim 8,

wherein the mass storage drive is a first mass storage drive,

the atleast a portion of the solid state drive is a first extent
in the solid state drive, and the method comprises virtu-
alizing a second extent in the solid state drive and a
second mass storage drive as another single physical
storage drive.

10. The method of claim 8, wherein the controller com-
prises dual controllers, the method comprises using a first of
the dual controllers for the solid state drive and using a second
of the dual controllers for the mass storage drive.

11. The method of claim 8, comprising presenting the
virtualized single physical storage drive as a hyper solid state
drive.

12. The method of claim 8, wherein the solid state drive
comprises NAND Flash memory.

13. The method of claim 8, wherein the mass storage drive
comprises a disk drive.

14. The method of claim 13, wherein the disk drive com-
prises an optical drive.

#* #* #* #* #*

